两大重要创新突破脑机科研瓶颈 当天马斯克所展示的Neuralink进展,无疑让人眼前一亮,仿佛未来科幻世界场景就在眼前,然而与脑机连接相关的科研并非由Neuralink独创,在业界也已经发展了多年之久。 正如Neuralink总裁Max Hodak在去年夏天的发布会上所说,“Neuralink并不是凭空产生,在这以前的学术研究已经有了很长的历史,从很大意义上来说,我们是站在了巨人的肩膀上。” Neuralink目前在该领域的主要贡献在于突破了之前脑机研究的部分瓶颈。根据Neuralink此前对外发布的研究论文中所述,脑机界面(Brain-machine interfaces, BMI)已经证明了具备在广泛的范围内帮助临床疾病的潜力,例如,研究者们已经展示了人类神经修复设备可以控制电脑鼠标指针、机械臂以及语音合成器等,而实现这些只需要不超过256个电极。 这些成功的事例证明了通过脑机接口在人脑和机器之间实现大量的信息交互传递完全是有可能的,但目前为止,BMI的研发受到无法记录大量神经元的限制,目前为止还没有临床上可用的能记录大量信息的微电极技术。 目前现有的两种方案都存在着不小的弊病,一种运用硬金属或半导体,但由于尺寸过大,在植入大脑时容易引发免疫反应,从而影响到设备的功能和长期使用,另一种运用极细的多电极聚合物管线,虽然体积小,但缺点是坚硬度不足,难以直接植入脑内。 所以针对上述现有技术方案的瓶颈,Neuralink进行了两项重大创新:运用超细的聚合物管线(解决植入物尺寸问题)和神经外科机器人(解决管线硬度不足难以植入的问题)。 目前,Neuralink已经可以做到在脑部28平方毫米的面积上,快速植入96根超细管线(每根管线直径为4-6纳米,大概人类头发的三分之一,包含32个电极),总共包含3072个电极,这一电极数量已经大大超出前文所述的256个电极数量。根据每分钟植入6根管线的速度来计算,也就是说完成全部96根管线植入总共仅需16分钟。 根据当天发布会现场Nerualink研究员的描述,由于神经外科机器人能够借助计算机视觉和镜像进行精准操作,96根极细的管线在植入大脑时,并不会破坏血管,大大降低对大脑的损害,Nerualink的研究员还提到,由于管线非常细,因此这些管线在植入后会随着大脑组织一起移动而并不会对大脑组织造成破坏。 Nerualink所展示的创新突破无疑是意义重大的,就目前业界已经实现的脑机接口应用成果来看,仅需不超过256个电极就能够实现一些基本的人机操控互动功能,而Nerualink能够提供多达3072个电极,可想而知未来能够实现的人机交互功能将会更多,从短期来看,Nerualink的目标是帮助一些有脑神经相关疾病的患者,包括帕金森、肌无力、癫痫等,让这些人群重新获得与周围环境互动的能力,更长期的目标则是更为广泛的认知功能的实现,包括移动、视觉、空间定位、语言、记忆甚至是数理逻辑等。
|